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Abstract 
Digital technology has become a key part of the development of society and influences people’s 
ways of being, thinking, and communicating. Young people’s digital cultures are continuously 
developing, and this article investigates how two students’ productive struggle when 
programming in mathematics can be analyzed and understood from a cultural perspective. The 
data consists of two seventh-grade students who share a computer and program a pentagon. The 
task proves to be challenging and the students face several kinds of struggles. However, the 
students are persistent, apply communication qualities, and make continuous refinements in 
ways that create an interesting interweaving of mathematics and programming. The students’ 
communication qualities are used to describe characteristics of a productive struggle in the 
mathematics classroom and how such a culture can be supported. 
 
Keywords: Culture, community of communication, programming, productive struggle, 
mathematics, middle school, student pairs. 
	
Introduction 

This article investigates a pair of seventh-grade students struggling to program a 

pentagon. Our intention is to contribute to a better understanding of how programming and 

struggling can become an important part of a productive learning culture in which students’ 

mathematical language and learning are supported and challenged. Important inspirations are 

this motto of a first-grade mathematics class: “If you are not struggling, you are not learning” 

(Carter 2008, p. 136) and the focus on how students engage with and express important 

mathematical ideas through programming in the ScratchMaths project in the UK (e.g. Benton 

et al., 2018). Facilitating struggling, programming, and expressing ideas can be described as 

developing a culture for learning. Our approach to culture is to a small extent based on traditions 

and history, rather it is positioned in the present, aimed at building a culture for learning.  
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Two Perspectives on Culture 

Eriksen (2001) defined two perspectives for understanding culture – a historical 

perspective and a current perspective. From a historical perspective, culture can be understood 

as the practices, values, and ways of being that are transferred, while changing, to the following 

generations. This transfer of traditions influences how people think, communicate, and learn, 

and plays a role in how societies are built and how new generations are educated. The 

perspective emphasizes the historical roots and corresponds with perspectives from 

ethnomathematics (d’Ambrosio 1987; Bishop 1991; Fyhn & Nystad, 2014; Gerdes 2014). The 

historically rooted culture perspective is supported by traditions and experiences – and as 

culture is transferred to new generations, culture changes. Cultural learning is about people 

becoming part of and also influence on culture through cultural practices.  

Within the current perspective, the focus is on how people socially build culture, on the 

present and the possibilities for mutual understanding (Eriksen, 2001, p. 60). Eriksen 

emphasized that culture is what makes communication possible. He discussed how the two 

perspectives influence the relationship between groups, between “we” and “the others”. While 

the historical perspective can stabilize the relation between e.g. ethnic groups, the current 

perspective describes culture as created dynamically and continuously with an element of 

spontaneity; culture changes and is directed towards the future more than the present. Eriksen 

argued that the past is insufficient as a guideline for action because every period requires its 

diagnoses and its solutions. Internal connections do not exist in a particular cultural universe 

but in the whole created by each individual (p. 61). According to Eriksen, both the historical 

and the current perspective must be taken into consideration to see the whole picture of cultural 

processes. The current perspective on culture corresponds with Skovsmose’s (2014) emphasis 

on foreground. He discussed ethnomathematical perspectives and showed how young people’s 
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intentions are directed towards the future, but at the same time have historical roots. This 

implies, in line with Eriksen, that they search for opportunities for their lives in an extended 

community, where communication is possible. They build cultures. Facilitating such 

communication requires the development of a culture of participation in which students’ open 

sharing of ideas are valued, respected, and expected, Bennett (2014) argued.  

Based on his discussions of the two perspectives on culture, Eriksen (2001) developed 

three key concepts. He described how different ethnic groups build communities of interest 

through their cultural peculiarities, and as part of larger communities. Identifying and 

developing joint interests and intentions are vital for building culture. He argued that culture 

can be regarded as a community of communication. Developing certain ways of talking and 

understanding builds culture. The experiences position people in a field of intersection between 

past and future and between individuality and group community. Eriksen emphasized that 

cultural common denominators make communication possible and are important for building 

communities of communication. 

Students’ digital learning actualizes the current perspective on culture. Children and 

young people’s digital activities can be described by their continuous exploration of 

possibilities. They are individually active, and they search and develop local and global 

communities of interest as well as communities of communication. They build on their own 

and other’s experiences, they struggle to understand, evaluate, and make choices and decisions, 

they take part in and develop a culture for learning. They gain skills and insights by trying out 

things, and quite often, they take a systematic trial and error approach. Sometimes they fail, but 

the mistakes help them generate insights that can be used in their next attempt. Like the second 

author’s grandson (15 years) explains about ill-defined games: 
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You must struggle more to understand … then I have to try something and if things do 
not work out, then I have to go back and think about where I did some choices. See if I 
could have done something differently and then try again. 

 
Students’ initiative, interests, and intentions are driving forces, and cultural common 

denominators create conditions for these processes. When their digital activities and digital 

learning take place outside school, they take ownership and are in control. As students, they are 

part of the school culture where learning is structured and organized by the curricula and the 

teachers. The progression in school might limit students’ options and their possibilities to 

communicate with others, which in turn, can influence their ownership. Eriksen’s (2001) 

current culture perspective actualizes a discussion about how young people can build a digital 

learning culture where they find digital learning in school relevant to their own digital learning 

culture. This can imply the identification of relevant cultural common denominators between 

activities they take part in at school and outside school. 

Programming and Productive Struggle 

Digital literacy is the ability to use technology to develop 21st-century knowledge and 

skills such as critical thinking, communication, and collaboration (Dede, 2010). The focus on 

digital literacy has re-orientated to include programming, and during the last decade, 

programming is integrated into mathematics (and other subjects) in many countries (Balanskat 

& Engelhardt, 2015). In the future, Balanskat and Engelhardt argued, students need to not only 

be consumers but also take part in developing technology. Bishop (1991) emphasized, from a 

cultural view on mathematics education, that the increased use of computers in mathematics 

education calls for a critical awareness of how and when to use mathematical techniques, and 

“this requires much greater thought, but also a different kind of thinking and therefore it requires 

a very different approach to the curriculum” (p. 8). Programming has become an important 

21st-century skill, and this emphasis is becoming increasingly more evident in national policy 
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documents (Bocconi et al., 2018). However, Forsström and Kaufmann (2018) and Popat and 

Starkey (2019) have reviewed research on programming in mathematics education and found a 

lack of convincing evidence for the educational potential of programming. They call for more 

research on collective learning through programming in mathematics, particularly because 

programming transforms education – it creates new ways of learning and communicating in the 

mathematics classroom. 

We argue that one of these ways concerns the development of a community of 

communication in which struggling, trial and error, is systematized and made productive. The 

concept of productive struggle concerns students’ “effort to make sense of mathematics, to 

figure something out that is not immediately apparent” and “solving problems that are within 

reach and grappling with key mathematical ideas that are comprehendible but not yet well 

formed” (Hiebert & Grouws, 2007, p. 387). It is not about creating needless frustration or give 

challenges that are beyond reach for the students, rather it is about facilitating a culture that 

provides challenges that make sense and facilitates understanding in progress. The choices and 

understanding during the process of working towards a solution are as important as solving the 

challenge. Such processes are dependent on the establishment of a joint community of interest 

for learning between the students. The National Council of Teachers of Mathematics (2014) 

highlighted that supporting students' productive struggle in learning mathematics is an 

important teaching practice. Like Mason, Burton, and Stacey (2010) argued: “being stuck is an 

honourable state and an essential part of improving thinking” (p. viii). Boaler (2016) supports 

the idea of struggle as valuable because that is when “the brain sparks and grows” (p. 11). 

Mason et al. (2019) and Boaler (2016) argued for a classroom culture where asking good 

questions, discussing and reasoning about complex problems, are more emphasized than 

calculating quickly. The students should be encouraged to take risks, struggle, fail and feel good 
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about working on hard problems. It is about what Lee and Johnston-Wilder (2013) termed as 

mathematical resilience: “to develop a positive adaptive stance to mathematics such that it will 

allow them to continue learning despite barriers and difficulties” (p. 164). 

Little research is done on the link between programming and struggling. One exception 

is Kim, Yuan, Vasconcelos, Shin, & Hill (2018) who found that processes of debugging when 

doing block-based programming promotes the understanding of programming and can facilitate 

productive struggle. Kapur (e.g. 2014) developed the concept of productive failure based on the 

value of letting students solve problems before being taught the concepts and procedures, even 

if it leads to failure. Granberg (2016) built on Kapur’s (2014) work when she focused on how 

students’ problem solving can generate productive struggles when they use GeoGebra to solve 

linear function tasks. The following recurring student comment illustrates the significance of 

students developing their methods and making errors: “We did not actually think until we 

discovered that we failed” (p. 46). GeoGebra provides instant feedback and visualizations, and 

this helped the students recall and reconstruct prior knowledge, which was vital for making 

their struggles productive.  

Productive struggles can be linked with programming through computational thinking. 

Computational thinking is an approach that involves systematic steps to solve problems and 

find solutions, and programming is often required to execute these solutions (Morris et al., 

2017). Several countries in Europe have integrated computational thinking and programming 

as a key competence to be acquired in their national curriculums (Balanskat & Engelhardt, 

2015). Two components of computational thinking are debugging (finding and fixing errors) 

and persevering (keep going, be resilient), and these are core aspects within productive 

struggles. 
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Warshauer (2015) developed a framework for students’ productive struggle based on 

how teachers’ responses can “work to build community understanding” (p. 379). She described 

a community of communication where teachers do not funnel students towards quick answers 

and the easy correct method and do not deprive students of the opportunity to think and struggle. 

In her framework, Warshauer identified four kinds of struggles. The first is to get started and 

concerns confusion about what the task asks for and how to approach it. The second is to carry 

out a process and involves slow progress due to problems with carrying out procedures and 

making errors. The third is uncertainty in explaining and sense-making and concerns challenges 

in explaining the work and justifying strategies. The fourth is to become aware of and express 

misconceptions and errors. Warshauer underlined the importance of offering tasks that 

challenge students to do mathematics that goes beyond memorization and procedures and how 

maintaining this level of cognitive demand is dependent on communication qualities. Such 

communication qualities can be regarded as cultural common denominators and important for 

building a community of communication (cf. Eriksen, 2001). Important examples are teacher 

responses that provide information and link students' thinking with prior understanding. 

According to Warshauer, this involves careful listening, revoicing, and questioning that give 

direction and demand intellectual work. It is about developing a learning culture in which 

mistakes are made into potential sources for learning and sense-making.  

Alrø and Skovsmose’s (2002) concept of dialogue can be used to elaborate on cultural 

common denominators like Warshauer’s communication qualities. Taking an Alrø and 

Skovmose perspective, the productive struggle is a collaborative activity where processes and 

answers are not given beforehand. This implies elements of unpredictability and risk and 

requires an open, equal, inquiring, and learning-oriented dialogue. According to Alrø and 

Skovsmose (2002), the concept of intention in learning plays an important role in a learning-
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oriented dialogue. This is closely related to Eriksen’s (2001) concept of the community of 

interest because intention means having an interest and voluntarily be striving for something. 

Intentions cannot be forced upon someone else, because “intentional orientation must be 

performed by the person himself or herself” (Skovsmose, 1994, p. 184).  

We find that Eriksen’s (2001) current perspective on culture, the three concepts 

community of communication, community of interest, and cultural common denominators, 

Warshauer’s framework for productive struggle, and Alrø and Skovsmoses’ (2002) concept of 

dialogue offer a rationale and an approach for investigating students’ collaboration when they 

strive and struggle. Being able to describe and analyze what productive struggle looks like, can 

provide insights into how to facilitate and develop a teaching and learning culture that supports 

rather than hinders such processes. 

The Research Question 

The perspectives presented above suggest that striving and struggling to solve 

mathematical problems is necessary for engaging with and expressing mathematical ideas and 

that developing a culture, a community of communication with particular qualities, can 

facilitate this. However, little research exists on students’ mathematical struggles in 

programming settings, and on how such struggles can be productive and promote students’ 

mathematical communication. The research question addressed in this article is, therefore: what 

characterizes a culture, a community of communication, that facilitates students’ struggle when 

programming a pentagon? We investigate how the students take part in and start developing a 

culture for learning. The aim is to offer insights into what characterizes students’ struggle, to 

identify qualities in what they say and do when they are challenged to program a pentagon and 

to gain a better understanding of how productive struggle can be facilitated. 
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Methodology 

Eight seventh-grade students divided into four pairs participated in the study. Each pair 

shared a laptop and did block programming with Scratch. The students had little experience 

with programming, but Scratch does not require knowledge about programming 

language/syntax and the interface is quite transparent and user friendly. The students were 

challenged to use Scratch and program a quadrilateral, pentagon, a circle, a star, and a house. 

Two Master of Education students conducted the activity and the data collection, and they 

aimed to facilitate a mathematical focus by making tasks of appropriate complexity so that how 

to get started and to carry out the process was not immediately apparent for the students. The 

master’s students wanted to give room for the students’ learning culture by providing few to no 

guidelines for how to approach the tasks. To mitigate the chances for the struggles to be 

counterproductive, the master’s students did a pilot study and prepared the tasks and the use of 

Scratch together with the teacher and their supervisor (the first author of this article). 

This article concentrates on Ida 

and Knut’s effort to program a pentagon. 

Their work was video recorded 

perpendicularly from the side, and an 

external microphone ensured good sound 

quality. A screen-recording app 

documented what the students did on the 

computer, and the recordings were merged into a picture-in-picture film, see Figure 1. This 

provided multimodal and informative documentation of their collaboration; on how they 

discussed, used the computer, and reacted to what happened on the screen. The four excerpts 

are chosen because they are informative and represent well the students’ struggles.  

Figure 1: Screen dump from the PIP film 
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Eriksen’s (2001) approach to culture is used as an analytical framework to gain insights 

into what characterizes a culture that facilitates productive struggle. When investigating aspects 

concerning the community of interest, we searched for traces concerning students’ intention in 

learning. When investigating cultural common denominators, we identified and analyzed the 

communication qualities emphasized by Warshauer (2015) as part of her four kinds of struggles 

and Alrø and Skovsmose’s (2002) concept of dialogue. This gave grounds for identifying key 

characteristics of a community of communication and gave insights into what characterizes a 

culture where students’ productive struggles, their joint development of interests and cultural 

common denominators are facilitated.  

Analysis: Programming a Pentagon – Managing Different Struggles 

The following excerpts show, chronologically, how Ida and Knut 

collaborate to program a pentagon. They immediately face challenges with 

deciding the number of steps for the side lengths and how many degrees 

to turn for making suitable angles. Before this, they had programmed a 

square. 

Ida and Knut struggle to get started because they must discuss what a pentagon looks 

like. Knut takes a sheet of paper and draws a test shape (Figure 2). He counts the sides, becomes 

uncertain, and asks Ida if she thinks it is a pentagon. Ida first says yes, then takes a closer look 

and counts six sides: “That’s a hexagon”, she says. Both are trying to draw a pentagon by 

revising Knut’s initial drawing but get confused: “This looks like a house?” “Then we make a 

house and a pentagon?” “No, it cannot be correct […] because the angles have to be identical.” 

“Do they?” Their tone of voice is questioning and dwelling, they make multiple drawings, and 

question, listen, point at the drafts, and invite each other to participate, they are developing a 

community of communication. Ida and Knut show uncertainty and are struggling to understand 

Figure 2: Drawing 
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– together. They dare to tell each other that they do not know and that they are uncertain. Both 

try different drawings and are aware of the possibility of making errors. It is risky, but they can 

operate with uncertainty, and it becomes clear that they trust each other. The question about 

identical angles makes them halt. They look at each other, turn and ask one of the master’s 

students, but she encourages them to decide the criteria themselves. Ida and Knut carry on, 

agree on five sides as a key property and revise Knut’s drawing to make a sketch similar to a 

regular pentagon. They have struggled to interpret the task mathematically and have not yet 

talked about programming. They have however made a strategic first step in preparing for 

solving the challenge of making a pentagon and started to establish a community of interest. A 

joint intention in learning becomes a cultural denominator through a learning-oriented dialogue 

and helps them managing uncertainty and the potential struggles that lie ahead of them. Their 

struggle now turns into a discussion about the size of the angles, and they start using the 

computer: 

Knut:  How can we do it? Wait, how many degrees are a pentagon? 

Ida:  I have no idea. A quadrilateral is 90°. A pentagon, I have no idea. It is at least 

more than 90°. […] I think we need more than 90°. It has to be more than 90°, 

kind of, because all of them are obtuse. 

Knut: 120? 

Ida:  Yes, maybe. I don’t know.  

Knut:  Let’s just try, then. 

Knut shows uncertainty and is inviting when he asks, “How can we do it?” He appears to have 

the sum of interior angles in mind when he asks how many degrees there are in a pentagon. Ida 
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responds, and she as well expresses uncertainty: “I have no idea.” They 

continue to take the risk of telling the other that they do not know and 

strengthen their trust in each other. Ida follows up, refers to the 90° 

angles in a quadrilateral, and seems to have a regular polygon in mind. 

Ida goes on to argue that the angles must be more than 90° by calmly 

saying, “because all of them are obtuse”. Knut suggests trying 120°. Ida is not sure, but they 

decide to start coding, see Figure 3. 

The program stops functioning temporarily, and when it starts 

working again, the students decide to try 160° instead of 120° and get the 

angle in Figure 4. When the angle is drawn, they say “What?” with a 

confused tone of voice. They see that 160° is an error and agree that it 

makes sense to try a smaller angle like 60° and get the angle in Figure 5. 

The turn block gives the turning angle α and not the anticipated interior 

angle β (α and β are supplementary angles), and this adds to their sense-

making struggle of finding an appropriate angle. However, their systematic approach to test 

angles less than and more than 90°, and the way they support each other to address the issue of 

the number of sides, give them a better understanding of how the program works and make 

them ready to start extending the code to make a pentagon by inserting more of the move and 

turn blocks. 

Ten minutes earlier, Ida and Knut programmed 90° angles when making a square and 

that is probably a reference for them when they test angles larger and smaller than 90°. 

Programming the square was quite unproblematic because both knew the geometry of the 

square, and the interior angle was the same as the turning angle. When challenged to program 

a pentagon, it becomes evident that they are unsure about what a pentagon looks like. They are 

Figure 3: The first code 

Figure 4: Test angle 

β α 

Figure 5: Test angle 
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told to decide the criteria themselves. Even though both are confused, they make and investigate 

new drafts collaboratively, and at the end, they agree to make a pentagon with five sides and 

the angles should be of equal size. They go on to investigate the programming part, 

remembering that the square was made by moving a number of steps and turning 90°, but they 

struggle to become familiar with how the turn block works. Although the Scratch interface is 

quite user-friendly, it is not straight forward to understand that the turn block draws turning 

angles and not interior angles. The programming contains a mathematical problem, and the 

geometry contains a programming language problem, and the students are challenged to enter 

both languages simultaneously. 

This initial phase has productive qualities for at least two reasons: the students become 

aware of what the task asks for and how to approach it, and they start developing a community 

of communication through how they apply dialogic communication qualities. Both are engaged, 

make drafts, express insecurity, and listen to each other’s ideas. Their communication shows 

respect, trust and equality. Ida and Knut run a risk when they show insecurity, make proposals, 

and investigate a problem to which they do not know the answer. These characteristics, together 

with their persistence and mathematical resilience, the willingness to succeed, and how they 

manage to make a basis for a carry out process, describe their joint community of interest and 

learning-oriented intention. 

Ida and Knut take a systematic trial and error approach, demanding and vulnerable, 

involving Warshauer’s (2015) four kind of struggles and the establishment of cultural common 

denominators with the communication qualities included in Alrø and Skovsmose’s (2002) 

dialogue concept. The dialogical approach continues when the students carry on and revise the 

code by changing the turn blocks to 60°, see Figure 6. They are both focused and lean and point 

at the screen. The communication is intense, energetic, they almost speak at the same time, but 
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they manage to reply and continue each other’s utterances. They end up with the shape in Figure 

7, and the confusion and struggle continue: 

Knut:  We lack one. Look! 

Ida:  Yes, I don’t quite get it. 

Knut:  No …  

(They click space again, and get the same shape) 

Ida:  Then we have to take move 100. 

Knut:  No, it makes a hexagon. 

Ida:  Ok, but then we can’t use 60°. 

Then we must have less. No, 

more. 

The shape lacks one side to be closed. Ida and Knut get confused and uncertain, click the 

spacebar one more time but get the same shape again. They realize that 60° gives a hexagonish 

shape and try a different angle. Ida suggests that “we must have less” and then corrects it quickly 

to “No, more”. They continue the inquiring process, try 80°, and get the shape in Figure 8 where 

the last side intersects the first. Based on this shape, they quickly decide to try 70°: 

Knut:  Wait! Isn’t that a hexagon? … A pentagon. 

Ida:  Yes, that is what we want. 70° then. 70 is probably ok 

since 60 isn’t … isn’t, let us try 70, he-he. 

Knut:  Yes, it might be … if it is 70, then I’ll be happy!  

Ida:  Yes, me too … okay. (Clicks the green flag) 

Ida:  Yees! No, what is that? (Points to the gap)  

Knut:  1, 2, 3, 4, 5 (points to the sides), yes, then we got it! 

Figure 7: Hexagon? Figure 6: The code 

Figure 8: 80° angles 

Figure 9: 70° angles 
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Ida:  But it is not completely … closed … (points to the gap again) 

Knut:  It is, it is, it is (energetic tone of voice), they can’t see that. 

When the turn block is changed to 70°, they get the shape in Figure 9. It looks like a pentagon, 

but the last side stops just before it gets back to the starting point, the shape is not closed. Knut 

wants to accept it, and says, "They can't see that". Ida asks the master’s students to approve it, 

but the master’s students challenge them to explain why there is a small gap and give a hint by 

asking if it could be something with the numbers. Knut acknowledges the room for 

improvement, and they find yet again energy to revise their code: 

Knut:  Can try 102, no 105, on the first and the second. No, on the first and the last. 

Ida:  But maybe it is the degrees? 

Knut:  No, it is not something with the degrees, we have tried that too much. 

Ida:  But maybe some that are longer than others? 

The students are aware of the gap error and adjust the first and the fifth move block from 100 

steps to 105, click the green flag and get what looks like a closed pentagon (it kind of works 

because they have pen size 5). The gap is between the first and the fifth side, so it makes a lot 

of sense to increase the length of these two sides to get a closed polygon. They give a sly smile; 

point to the screen and comment that the sides are not equal. 

Discussion and Concluding Comments 

What characterizes a culture that facilitates students’ mathematical struggle when 

programming a pentagon? There must be a mathematical challenge that is complex enough so 

that developing a community of communication, a community of interest, and cultural common 

denominators are required. Ida and Knut had to inquire what a pentagon looks like because they 

needed an understanding of its geometrical properties to get started with the programming. This 

understanding is used as a basis and is further challenged when they face some of the 
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affordances and constraints of Scratch. When they start coding, the code blocks in Scratch 

facilitate a focus on the length and number of sides and the size and number of angles. Scratch 

features like the code blocks become something shared between the students, the code blocks 

become part of the cultural common denominators that are important for developing a 

community of communication. 

This study supports and adds to the findings by Granberg (2016) and Kim et al. (2018) 

that programming can promote productive mathematical struggles. Ida and Knut grappled with 

the pentagon and the programming, both of which were ideas that were comprehendible but not 

yet well formed for them. Through the process, in an investigative mode, they dealt with several 

mathematical ideas about properties of pentagons such as the role of angles, the size of the 

angles and different types of angles, regularity, distinguishing between types of polygons 

according to the size of angles, and key questions like: can sides intersect and do polygons have 

to be closed? Making continuous adjustments to the angle size in the code involved 

mathematical understanding about the turning angle and the supplementary interior angle to 

make sensible adjustments. It was a process that can make them open to take on a more 

mathematical stringent approach later. For instance, spending time discussing regularity and 

becoming aware of the fact that their polygon is not regular can have increased their readiness 

to learn more about regularity and angle sizes. Ida and Knut struggled, but their working process 

was supported by how the shapes that represented each code were drawn instantly and provided 

immediate feedback. In this respect, the computer screen can be regarded as a third participant 

in their community of communication. It was a multimodal context in which mathematical ideas 

were represented with several different representations: the students’ drawing with pencil and 

paper, the programming part with the codes and the drawings of the shapes, and the student’s 

gestures and oral explanations. Thus, their struggle to program a pentagon can be characterized 
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as a systematic trial and error approach that facilitated and required an interweaving of 

programming and mathematics. From a teacher perspective, being able to identify and 

understand what productive struggle looks like can be important in order to be able to 

acknowledge and support such student approaches. 

Mason et al. (2010) argued that “a great deal more can be learned from an unsuccessful 

attempt than from a question which is quickly resolved” (p. ix). The struggle to program a 

pentagon could easily have been a missed opportunity if the teacher or a peer had given Ida and 

Knut a quick solution for how to program a pentagon: Use a turn block of 72° and a move block 

of x steps together with a repeat block and voila: a pentagon is drawn. The master’s students, 

however, did something quite different. The students were encouraged to use Scratch to 

program certain geometrical shapes, interpret the tasks, get familiar with Scratch, and decide 

the criteria for the pentagon – the students’ independence was called for. They had to struggle 

to investigate the mathematics and the programming language, and Ida and Knut faced all four 

kinds of Warshauer’s struggles. To get started they had to discuss the number of sides and if 

the sides had to be of equal length, and then if the angles had to be equal. Their struggles 

continued when carrying out the process of programming by first understanding how the turn 

function worked and thereafter with different angles, narrowing down towards an appropriate 

angle. On several occasions, the students faced uncertainty in explaining and sense-making. 

They started at 120°, then tried out 160° and got confused. Trying 60° gave them a shape that 

looked like a hexagon but lacked one side. They went on to try 80° and got a shape that both 

were about to accept as a pentagon, but the last side intersected with the first. Trying 70° gave 

them a shape that was almost a pentagon, but it had a small gap and was not closed. Knut argued 

that it was good enough and the task was solved, but the idea of changing some of the side 

lengths gave renewed energy. Finally, they managed to make what appeared to be a closed 
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polygon with equal angles but different side lengths. It was not a regular pentagon, but the task 

never required that, and it was, mathematically speaking, not closed.  

Despite their struggles, Ida and Knut kept going. They showed mathematical resilience 

and focused on the investigations and procedures they discussed and agreed to carry out. They 

managed to become aware of and express errors and evaluate them to make new, adjusted 

efforts. Their struggling processes can be described as loops: discuss–make new attempts–get 

negative/positive result–evaluate. The moments when a revised code was ready to be tested 

appeared to be critical: The students straightened up, looked at the screen, held their breaths, 

and then clicked the green flag. When becoming aware of an error, they brought forth new 

energy to start a new loop. Even after the fourth loop, when Knut had to acknowledge the tiny 

gap, they saw new possibilities for revising their strategy. Through their revisions, they showed 

a more and more refined understanding of the problem. A key characteristic of their struggle to 

program a pentagon was how it triggered communication qualities: they found strategies, tried 

them out, learnt from them to get new ideas for the next attempt, and they expressed ideas and 

listened to each other. Ida and Knut applied an open, inquiring, and learning-oriented dialogue 

and communicated in ways that made uncertainty and mistakes into sources for learning and 

sense-making. They strived to understand and master the mathematics and programming 

activity, they showed intention in learning. These qualities made their communication possible 

and correspond with the students’ digital approaches outside school. The students showed that 

they can build a culture for learning that makes such communication possible, and the ways 

they communicated contribute to developing this culture. 
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